

Fiche technique CuAl10Ni5Fe4 Désignation

ONOTHE AFNOR: CuAl10Ni5Fe4

Norme EN : CW307G

l Norme DIN : 2.0966

Description

Le CuAl10Ni5Fe4 est un alliage de cuivre-aluminium renforcé par du nickel et du fer. Il appartient à la famille des cupro-aluminiums, reconnus pour leur excellente résistance à l'usure, à la corrosion (notamment en milieu marin) et leurs bonnes propriétés mécaniques. Il est utilisé dans les environnements sévères, notamment en marine, industrie lourde et aéronautique.

Composition chimique

Propriété	Valeur
Cuivre (Cu)	76,0 - 83,0 %
Aluminium (Al)	8,5 - 11,0 %
Nickel + Cobalt (Ni + Co)	4,0 - 6,0 %
Fer (Fe)	3,0 - 5,0 %
Manganèse (Mn)	≤ 1,5 %
Silicium (Si)	≤ 0,10 %
Plomb (Pb)	≤ 0,02 %
Impuretés totales	≤ 0,20 %

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	150 - 250
Résistance à la traction (Rm)	600 - 850 MPa
Limite d'élasticité (Re)	300 - 450 MPa
Allongement (A%)	5 - 15 %
Résilience (KCV)	bonne

Propriétés physiques

Propriété	Valeur
Densité	7 600 - 7 800 kg/m³
Module d'élasticité	~120 000 MPa
Conductivité thermique	~40 W/(m·K)
Température de fusion	~1 030 - 1 080 °C

Traitements thermiques

Trempe : possible à l'air ou à l'eau selon application

Revenu : utilisé pour stabilisation après trempe

Traitements de surface

Polissage : fréquent pour résistance à la corrosion

Revêtements : possibles selon milieu d'utilisation

Soudabilité

Moyenne, soudobrasage ou techniques spécifiques à privilégier, avec préchauffage

Applications courantes

- Marine : hélices, accouplements, turbines
- lndustrie : paliers, pièces d'usure
- Aéronautique : composants soumis à frottement
- Défense : pièces en mouvement, systèmes navals

Propriétés et avantages

- Très bonne résistance à l'usure
- **②** Excellente tenue en milieu salin
- Bonnes propriétés mécaniques
- Stabilité dimensionnelle
- Bonne tenue à la cavitation